
Singaporean Journal Scientific Research (SJSR) 
ISSN: 2231 - 0061Vol.4, No.1 pp. 250 - 254 
©Singaporean Publishing Inc.  2011 
available at: : http://www.iaaet.org/sjsr 

 

 

DE noising Shack Hartmann Sensor Spot Pattern Using 
Zernike Reconstructor 

AkondiVyas #,*1, M. B. Roopashree #2, B. Raghavendra Prasad #3 
# Laser Lab CREST, Indian Institute of Astrophysics 

2nd Block, Koramangala, Bangalore, India 
1 vyas@iiap.res.in2roopashree@iiap.res.in3 brp@iiap.res.in 

* Indian Institute of Science, Malleswaram, Bangalore, India 

ABSTRACT 

Shack Hartmann Sensor (SHS) is inflicted with significant background noise that deteriorates the 
wave-front reconstruction accuracy. In this paper, a simple method to remove the back ground noise with the 
use of Zernike polynomials is suggested. The images corresponding to individual array points of the SHS at 
the detector, placed at the focal plane are independently reconstructed using Zernike polynomials by the 
calculation of Zernike moments. Appropriate thresholding is applied on the images. It is shown through 
computational experiments that using Zernike Reconstructor along with usual thresholding improves the 
centroiding accuracy when compared to direct thresholding. A study was performed at different Signal to 
Noise ratio by changing the number of Zernike orders used for reconstruction. The analysis helps us in 
setting upper and lower bounds in the application of this denoising procedure. 
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1.  INTRODUCTION 

There are a wide range of applications where 
wave-front sensing is essential like adaptive optics, lens 
testing and ophthalmology [1]. A Shack Hartmann 
Sensor (SHS) measures the shape of the wave-front 
incident on it [2]. It is made up of lenses arranged in a 
two dimensional array that directs the light towards the 
focal plane. A detector placed at the focal plane of the 
lenslet array records the position of the spots. The spots 
by and large maintain a Gaussian structure. The 
signatures of the distortions in the wave-fronts are seen 
by the sensor as local shifts in the focal spots depending 
on the local slopes across individual apertures [3]. The 
wave-front sensors generally operate in real-time and 
the position of the fluctuating spot is estimated at a 
frequency equal to the rate of fluctuations using 
centroiding techniques [4]. The shape of the wave-front 
is then evaluated from the measured shifts of the spots 
[5-8]. 

The problem of estimating the centroid of an 
incoherently imaged point with a detector array is 
analysed in the literature [9]. The effects of this on a 
wave-front reconstruction formed by a Shack–
Hartmann sensor are described. Generally, the wave-
fronts falling on the sensor carry along with them 
additive noise which cannot be distinguished most 
times from the actual signal. There are many methods 

of minimizing the effects of noise like thresholding, 
noise filtering by linear, median and adaptive filters. In 
applications where the Signal to Noise Ratio (SNR) is 
small, noise minimization becomes important. At low 
SNR, some of the above mention methods of noise 
minimization fail. They even do not take the advantage 
of the fact that in this case the spot pattern is generally 
Gaussian. 

Zernike polynomials are a set of continuous 
orthogonal circular polynomials defined over the unit 
disk. Since they form a complete set of orthogonal 
polynomials, any two dimensional function can be 
represented as a proper linear combination of this basis 
set [10]. Zernike polynomials are used in many 
applications such as pattern recognition, image 
representation, aberration production and wave-front 
sensing [11-12]. Zernike polynomials are known for 
their ease of production and representation of Seidel 
aberrations using lower order Zernike polynomials. 
There are many recursive algorithms for easy 
computation of Zernike moments of two dimensional 
image functions [12]. In this paper, calculation of the 
Zernike moments is done using a fast and accurate 
method implemented by Hosny that minimizes the 
geometric errors by a proper image mapping and 
removes approximation errors by the exact calculation 
of Zernike moments [13]. Noise is generally a higher 
order feature compared to the signal. The reconstruction 
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of the images using lower order Zernike moments will 
minimize the noise amplitude compared to the signal. 
This method may fail if the spatial extent of noise 
becomes significantly comparable to the signal length 
scales, in this case, the spot size. By applying a suitable 
noise threshold over the images, it is also possible to 
eliminate the effects of background noise. In the case of 
the Shack Hartmann spots, the signal features are 
similar to noise features for small spots and hence more 
care has to be taken so that the signal strength is not 
reduced. This is the major reason why regular noise 
removal algorithms fail in this case.  

The performance of the proposed method is a 
function of the SNR, the number of Zernike moments 
used for image reconstruction and threshold. A detailed 
analysis of the centroiding accuracy to the sensitivity of 
SNR, optimum number of Zernike moments and 
threshold limit is presented. Optimization of these 
parameters will allow us to place limits over the 
performance of the sensor in the presence of noise. 
Taking the advantage of the fact that the spot maintains 
a Gaussian shape, it is shown using computational 
experiments that the noise can be efficiently removed 
even at low signal levels. 

2.  BACKGROUND 
Zernike polynomials are well known basis for 

image processing and image representation applications. 
The finer details of the images are represented using 
higher orders of Zernike moments and the broad 
features need computation of lesser number of moments.  

The Shack Hartmann spot pattern superimposed by 
a uniform background noise was simulated. These 
simulated images were used for the statistical analysis 
of the proposed method. The spot pattern images were 
reconstructed using Zernike polynomials. 

A. Simulation of the spot pattern 
Simulation of the spot pattern at the focal plane of 

SHS was performed in two steps as detailed below: 
 A two dimensional Gaussian intensity pattern 

was simulated with an image size of 64×64 
square pixels. The centre of the spot was 
positioned at a known position on the image. The 
shift in the spots was measured with respect to 
the image centre. The assumption of a Gaussian 
image spot is more appropriate in the case of 
larger spots since they satisfy the minimum 
distance condition to represent a Gaussian spot 
better. The simulation has control over the spot 
size, SNR, the shift of the spot and image size. 
Throughout the paper, the spot size was 
maintained to be 6 pixels across the diameter of 
the spot. Spot size is defined as the distance over 

which the intensity falls off to 1/e value of the 
maximum intensity. 

 A two dimensional spatially uniform noise was 
then superimposed on the simulated spot whose 
spatial intensity distribution function followed 
Gaussian statistics. 

Sample spot pattern images with different SNR are 
shown in Figure. 1. 

 
Figure. 1. Spot pattern images with SNR (a) 0.3 

(b) 0.5 (c) 0.7 and (d) 0.9 

B. Proposed method – Zernike Reconstructor (Z.R) + 
Thresholding (Th) 
The proposed noise removal method is a two-step 

process involving the reconstruction of images using 
Zernike polynomials and the application of classical 
image thresholding algorithm. The spot pattern image 
with SNR=0.3 reconstructed using Zernike moments is 
shown in Figure. 2. 

During the thresholding process, individual pixels 
are marked as target pixels if their pixel value is greater 
than the threshold and pixels with pixel values below 
the threshold are forced to take the lowest pixel value. 
Applying thresholding (80% of the peak value) to the 
noise image directly and the reconstructed images 
shown in Figure. 2(b), 2(c), 2(d) have a different effect 
and are shown in Figure. 3. 

 
Figure.2. Images reconstructed using Zernike 

Polynomials (a) original image (b) Reconstructed 
using 25 orders (c) 30 orders (d) 35 orders 

 

 
Figure. 3. Thresholding (a) original image (b) 25 

orders (c) 30 orders (d) 35orders 

C. Centroiding algorithms 
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The centroiding methods used in this paper include 
normalized Centre of Gravity (CoG) and Iteratively 
Weighted Centre of Gravity (IWCoG). The CoG 
method uses the averaging formula, which is the ratio 
of sum of products of position coordinate and intensity 
at that point to the total intensity. Weighted CoG 
method uses additional information that the spot has a 
Gaussian spread and weights the intensity function with 
a Gaussian intensity distribution, effectively fitting a 
Gaussian to the spot. In IWCoG method, the position of 
the Gaussian centre and the spread are iteratively 
corrected to go closer to the actual position of the 
centroid [4]. 

These techniques have their advantages and 
disadvantages. CoG method has advantage over other 
techniques in the absence of noise. In the presence of 
background noise the performance of CoG method is 
degraded. If the background noise is uniform and the 
number of pixels under observation (image size) is 
large then statistically, the centroid of the noise will be 
closer to the image centre and not close to the actual 
centroid at low SNR. The IWCoG method has an 
advantage that it can detect the centroid position more 
accurately even in the presence of noise, but at the cost 
of increased computational time and iteration 
convergence problems. If the shape of the spot is not 
retained as a near Gaussian due to the addition of 
background noise, IWCoG fails to accurately locate the 
centroid, in which case noise minimization becomes 
critical. 

D. Average centroid estimation error 
The performance of the centroiding algorithms was 

analysed using the percentage centroid estimation error 
(CEE) defined as shown below: 

100
)) 2*2*
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(y(x
CEE cc cc yx

               (1) 
where (xc, yc) represents the position of the actual 
centroid (known since the spot position is controlled by 
the simulation), and (xc*, yc*) is the centroid position 
estimated using the algorithms. S is the amplitude of 
shift of the spot from the image centre (also known 
from simulation). Since the added noise is a statistical 
quantity, average centroid estimation is calculated 
which is an average of many realizations of the centroid 
estimation error for a particular case. In the subsequent 
sections, average centroid estimation error is the mean 
of 100 realizations of the centroid estimation error. 

E. Gaussian Spot 
In this case it is possible to take the advantage of 

the fact that the spot maintains a Gaussian shape. Figure. 
4 shows the case of partial noise removal. 

 
Figure. 4. Partially noise removal (a) Gaussian 

spot (b) Noise imposed Gaussian spot, SNR=0.2 (c) 
Spot pattern reconstructed using 44 orders of 
Zernike polynomials (d) 60% Thresholding. 

The minor features in Figure. 4(d) are a resultant of 
the significant features in the reconstructed spot, Figure. 
4(c). Although these minor features are significantly 
large, they do not bear a Gaussian shape. Pattern 
recognition algorithms can be used to eliminate these 
features. The next question arises as to how to 
recognize whether the images are partially or fully 
noise free. This can be done by measuring their 
correlation with a standard Gaussian spot image. If the 
images contain these minor features, the value of the 
correlation coefficient is low (< 0.7). 

3.  SIMULATION RESULTS 
A. Signal to Noise Ratio(SNR) 

The performance of the centroiding algorithms 
depends strongly on the SNR. A comparison of CoG 
and IWCoG algorithms at different SNR is shown in 
Figure. 5. 

The performance of the Zernike reconstructor 
based noise removal algorithm method is a function of 
the signal to noise ratio when applied to different 
centroiding algorithms. The comparison of the 
performance of the CoG algorithm before and after the 
introduced noise removal algorithm is shown in Figure. 
6. 

 
Figure. 5. Comparison of the performance of the 

centroiding algorithms 
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Figure. 6. Comparison of the performance of CoG 
method before and after noise removal algorithm 

Figure. 6 suggests that the application of noise 
removal algorithm has very significant effect on the 
CoG algorithms at low SNR which otherwise is an 
under performer. Above a SNR of 0.3, the centroid 
estimation error reduces below 10%. The same effect is 
not seen in the case of IWCoG. The application of the 
noise removal algorithm is shown in Figure. 7. As it is, 
the IWCoG method has little CEE at SNR > 0.5 as 
shown in Figure. 5. The extent of improvement in the 
performance of the algorithm at SNR = 0.25 is greater 
than 5%. 

 
Figure. 7. Comparison of the performance of 

IWCoG method before and after noise removal 
algorithm 

B. Shift in spot 
The CEE reduces in the case of higher shift in the 

spots in the case of CoG and IWCoG in general without 
applying the noise removal algorithm. The behaviour of 
the CoG algorithm with Z.R + Th for shifts of 0.5, 1, 
1.5 pixels at different SNR also follows a similar trend 
below a SNR of 0.4. The bigger spot size has lesser 
error as shown in Figure. 8. There is an interesting 

phenomena observed repeatedly at SNR = 0.4, where 
the curves with 0.5 and 1.0 pixel shift cross each other. 

 
Figure. 8. CoG algorithm performance (with 

ZR+Th) at different shift amplitudes 

C. Zernike orders 
The effect of using different number of Zernike 

moments for reconstruction is shown in Figure.2 and 
Figure. 3. Increasing the number of Zernike moments 
for image reconstruction makes the finer features of the 
image more prominent. And hence the noise which is a 
finer feature in our case stands out. Making the finer 
features more prominent puts a lower limit on the 
threshold for complete noise removal, but this higher 
thresholding may lead to signal loss too. Hence it is 
suggested to use less number of Zernike orders for 
reconstruction and a hence lower threshold for total 
noise removal. 

D. Thresholding limits 

 
Figure. 9. Choice of threshold below SNR=0.5 

maybe critical 

Thresholding depends on the signal to noise ratio. 
A lower limit on thresholding is dependent on noise and 
the upper limit on thresholding is dependent on the 
signal strength. The dependence of the centroiding 
accuracy on the choice of threshold is shown in Figure. 
9. The choice of threshold has no effect for SNR > 0.5. 
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4. CONCLUSIONS 
The Zernike reconstructor along with suitable 

thresholding on images of the Shack Hartmann spot 
pattern can become a very effective tool for close to 
complete noise removal. This method can also be 
applied to cases where the signal to noise ratio is small 
and the spatial extent of the noise is much smaller 
compared to the signal. To avoid IWCoG that leads to 
convergence problems, the option of using CoG 
algorithm along with Zernike reconstructor based noise 
removal algorithm may be considered in wave-front 
sensing applications. It is shown that the accuracy of 
centroiding improves nearly 20 times while using CoG 
algorithm in the presence of noise with SNR less than 1. 
It is shown through computational experiments that 
even at low amplitudes of shifts this algorithm performs 
a good job. The limits on the threshold value is 
analysed and presented. 
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